Note

A Variable Coefficient Extension of a Formula for Series Conversion

1. Introduction

A five-term recurrence formula for converting a series of polynomials $\sum_{m=0}^{n} a_{m} q_{m}(x)$ into $\sum_{m=0}^{n} A_{m} Q_{m}(x)$ when $q_{m} \equiv q_{m}(x)$ and $Q_{m} \equiv Q_{m}(x)$ satisfy three-term recurrence formulas

$$
\begin{equation*}
q_{-1}=0, \quad q_{m+1}+(a(m)+b(m) x) q_{m}+c(m) q_{m-1}=0, \quad m=0(1) n-1, \tag{1a}
\end{equation*}
$$

and
$Q_{-1}=0, \quad Q_{m+1}+(A(m)+B(m) x) Q_{m}+C(m) Q_{m-1}=0, \quad m=0(1) n-1$,
has been given for the case where the coefficients a_{m} and A_{m} are constant (derivation in [1]; more compact expression in [2, 3]). The derivation was based upon a wellknown recurrence scheme of Clenshaw for summing the series $\sum_{m=0}^{n} a_{m} q_{m}(x)$ when $q_{m}(x)$ is any kind of function, not necessarily polynomial, which satisfies a recurrence formula $q_{m+1}+\alpha(m, x) q_{m}+\beta(m, x) q_{m-1}=0$ with no restrictions on the form of the functions $\alpha(m, x)$ and $\beta(m, x)$ [4]. It was first noted in [5] that Clenshaw makes no statement in [4] to imply that in his summation scheme the coefficients a_{m} need not be constant with respect to x (also noted subsequently in [1], and indicated independently by Ng in [6] who wrote $a_{m}(x)$ for a_{m}). This present note gives an extension of that five-term recurrence formula for converting

$$
\begin{equation*}
\sum_{m=0}^{n} a_{m}(x) q_{m}(x) \quad \text { into } \quad \sum_{m=0}^{n_{1}} A_{m} Q_{m}(x), \tag{2}
\end{equation*}
$$

for q_{m} and Q_{m} polynomials satisfying (1a) and (1b), $a_{m}(x)$ being a polynomial but not restricted to the m th degree, and A_{m} still constant, so that $n_{1} \geqslant n$.

2. Exiended Formula

We suppose that each $a_{m}(x)$, of degree $d_{m} \geqslant 0$, has been expressed as

$$
\begin{equation*}
a_{m}(x)=\sum_{i=0}^{a_{m}} a_{m, i} Q_{i}(x) . \tag{3}
\end{equation*}
$$

Then $A_{m}, m=0(1) n_{1}$, is equal to $a_{m}^{(n)}$ obtained from the recurrence formula

$$
\begin{align*}
a_{m}^{(k+1)}= & -a_{m}^{(k-1)} c(n-k)+a_{m-1}^{(k)} b(n-k-1) / B(m-1) \\
& +a_{m}^{(k)}[-a(n-k-1)+b(n-k-1) A(m) / B(m)] \\
& +a_{m+1}^{(k)} b(n-k-1) C(m+1) / B(m+1)+a_{n-k-1, m}, \tag{4}
\end{align*}
$$

where

$$
\begin{gather*}
m=0(1) N_{k+1}, \quad k=-1(1) \quad n-1, \tag{4a}\\
N_{-1}=0, \quad N_{0}=d_{n}, \quad N_{k+1}=\max \left[N_{k}+1, N_{k-1}, d_{n-k-1}\right], \tag{4b}\\
k \geqslant 0, \quad \text { going up to } \quad N_{n}=n_{1}, \\
a_{i}^{(j)}=0 \quad \text { for } \quad i<0, \quad \text { or } \quad i>N_{j} \tag{4c}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{n-k-1, m}=0, \quad m>d_{n-k-1} \tag{4d}
\end{equation*}
$$

The derivation of (4) is entirely similar to that given in [1] for constant a_{m} 's, but we now take into account the degree N_{i} in the ($n-i$)th term in Clenshaw summation by backward recurrence [4].

3. Computational Advantage

Of course, if we first obtain for every term in $\sum_{m=0}^{n} a_{m}(x) q_{m}(x)$ the expression for the right member of

$$
\begin{equation*}
a_{m}(x) q_{m}(x)=\sum_{j=m_{1}}^{m_{2}} b_{m, j} q_{j}(x) \tag{5}
\end{equation*}
$$

$b_{m, j}$ constant, $m_{1} \leqslant m \leqslant m_{2}$, through the repeated use of (1a), we may then apply the recurrence formula given in [1-3] for constant coefficients, for $n=n_{1}$. Discounting the difference in the preliminary work of obtaining the right members of (3) and (5), the conversion with constant coefficients involves the calculation of an $n_{1}+1$ by $n_{1}+1$ triangle of $a_{m}^{(k)}$'s, in number $\sim n_{1}^{2} / 2$, or, if $n_{1} \sim 2 n, \sim 2 n^{2}$, while (4) with variable coefficients $a_{m}(x)$ involves $\sum_{j=0}^{n}\left(N_{j}+1\right)$ quantities $a_{m}^{(k)}$, whose number will generally be much less than $(n+1) \times$ largest $\left(N_{j}+1\right)=(n+1)\left(n_{1}+1\right)$, say $\sim 3 n^{2} / 2$ by assuming $N_{j} \sim 3 n / 2$ on the average, which is likely to be even less in many cases.

4. Further Extension

We may still apply (4) to the case where the coefficients $a_{m}(x)$ are not polynomials, but given approximately by (3) for sufficiently high degrees d_{m} and hope to obtain a
sufficiently close approximation to the coefficients $A_{m}^{\prime}, m=0(1) n_{1}$, in the infinite series right member of

$$
\begin{equation*}
\sum_{m=0}^{n} a_{m}(x) q_{m}(x)=\sum_{m=0}^{\infty} A_{m}^{\prime} Q_{m}(x) \tag{6}
\end{equation*}
$$

from the coefficients A_{m} in the series $\sum_{m=0}^{n_{1}} A_{m} Q_{m}(x)$.

5. Conversion of Products

A useful special application of (4) occurs in the direct conversion of the product of two scries, namely,

$$
\begin{equation*}
\sum_{i=0}^{N} b_{i} P_{i}(x) \times \sum_{m=0}^{n} a_{m} q_{m}(x) \quad \text { into } \quad \sum_{m=0}^{n+N} A_{m} Q_{m}(x) \tag{7}
\end{equation*}
$$

for b_{i}, a_{m}, A_{m} constants, and $P_{i}(x)$ any i th degree polynomials not required to satisfy recurrence formulas. Taking $a_{m}(x)$ in (2) as $a_{m} \sum_{i=0}^{N} b_{i} P_{i}(x)$, they are identical except for a constant factor so that when $\sum_{i=0}^{N} b_{i} P_{i}(x)$ is expressed as $\sum_{i=0}^{N} B_{i} Q_{i}(x)$, we have $d_{m}=N, a_{m, i}=a_{m} B_{i}$, for $m=0(1) n$, in (3). This application includes products $\phi(x) \sum_{m=0}^{n} a_{m} q_{m}(x)$ for $\phi(x)$ any function that is closely approximable by an N th degree polynomial.

As one instance of a practical example involving (7), we might wish to obtain a Q_{m} series for $\phi(x) f(x)$ when $f(x)$ is approximated by some interpolation series $\sum_{m=0}^{n}$ $a_{m} q_{m}(x)$. In particular, when the Q_{m} 's are Chebyshev polynomials adjusted to any range $[a, b]$, we may replace the conversion formula given in $[3,(1 c)]$ by the present (4) applied to the interpolation polynomials considered in [3]. It may be true that, in the case where the Q_{m} 's are Chebyshev polynomials, the advantage in applying (4) to (7) does not appear too great over the alternative method of obtaining the right side of (7) from the product of the Chebyshev series for $\phi(x)$ and $f(x)$, replacing each $T_{r}(x) T_{s}(x)$ by simple and well-known expressions $\sum c_{i} T_{i}(x)$. However, for other important Q_{m} 's, e.g., Legendre, Jacobi, Laguerre, or Hermite polynomials, where the needed expressions for $Q_{r} Q_{s}$ as $\sum c_{i} Q_{i}(x)$ are not so simple or familiar, the use of (4) appears to be more advantageous.

Incidentally, the preceding remarks suggest another very special use for (7), which is to obtain the product of two Q_{m} series (constant coefficients) as a Q_{m} series, i.e., converting

$$
\begin{equation*}
\sum_{i=0}^{N} B_{i} Q_{i}(x) \times \sum_{m=0}^{n} a_{m} Q_{m}(x) \quad \text { into } \quad \sum_{m=0}^{n+N} A_{m} Q_{m}(x) \tag{8}
\end{equation*}
$$

where $d_{m}=N$ and $a_{m, i}=a_{m} B_{i}, m=0(1) n$, as before. But now the $c(n-k)$, $b(n-k-1)$, and $a(n-k-1)$ in (4) are replaced by $C(n-k), B(n-k-1)$ and $A(n-k-1)$, respectively. When the first factor on the left side of (8) is unity, (4) degenerates into its original unextended version [3,(1c)] which is formulated only so that $\sum_{m=0}^{n} a_{m} Q_{m}(x)$ reproduces itself.

References

1. H. E. Salzer, Comm. ACM 16 (1973), 705-707.
2. H. E. Salzer, Proc. IEEE, 63 (1975), 195-196.
3. H. E. Salzer, Math. Comp. 30 (1976), 295-302.
4. C. W. Clenshaw, MTAC 9 (1955), 118-120.
5. H. E. Salzer, "A principle of Clenshaw for computation by recurrence of a wide class of series," Anal. Mech. Assoc., Rept., No. 66-7, 1966, ii +7 pp.
6. E. W. NG, J. Comput. Phys. 3 (1968), 334-338.

Received: May 17, 1976
Herbert E. Salzer
941 Washington Avenue Brooklyn, New York 11225

